
Generic Dual Redundant Controller Requirements

Validation

Francis L. Schneider NASA Detailee

Jet Propulsion Laboratory/

NASA IVV Facility

100 University Drive, Fairmont WV 26554

sch@atlantis.ivv.nasa.gov

304-367-8304, 304-367-8211(FAX)

and

John R. Callahan

NASA&WVU Software Research Lab

NASA IV&V Facility

100 University Drive, Fairmont WV 26554

callahan@atlantis.ivv.nasa.gov

304-367-8235, 304-267-8211(FAX)

and

Steve Easterbrook

NASA/WVU Software Research Lab

NASA IV&V Facility

100 University Drive, Fairmont WV 26554

steve@atlantis.ivv.nasa.gov

304-367-8352, 304-267-8211(FAX)

31 March 1997

Abstract

This paper describes the preliminary work done to validate a Generic
Dual Redundant System (GDRS) system. The GDRS consists of two
synchronous distributed computing components. Its primary charac-

teristic is that it should have fault tolerant behavior in the face of

1



Draft - DO NOT REDISTRIBUTE 2

errors that are unpredictable at the outset. The system uses a variant
of checkpointing and rollback schemes found in the literature. The
scheme as used here is referred to as the Mark and Rollback process.

A SPIN model of the form m = P � A
:f was used. P is the �-

nite state program representing the model and A
:f is the composite

B�uchi automaton representing multiple requirements corresponding to
their linear temporal logic representation f such that f = ^n

i=1fi . The
method used for validation consists of constructing a composite B�uchi

automaton built from individual Linear Temporal Logic assertions that
capture system requirements. This automaton is then run against the

system model in the usual way to validate the model [5]. A scheme is
also suggested using the trail �les produced by the SPIN system to val-

idate the implementation. The results reported on here demonstrate
that the composite A

:f functions as required when driven by a highly
simpli�ed P . This conclusion shows that it is possible to validate a

mark (checkpointing) and rollback application of this type giving rise
to signi�cantly lower operational risk of failure and therefore (b) in-

creased reliability and availability.

Keywords

linear temporal logic, concurrent programming, communications proto-

col, checkpointing and rollback, mark and rollback, synchronous communi-

cation, validation

1 Introduction

This paper describes a work in progress to validate a Dual Redundant Space-

craft Controller. The development shows the construction of the validation

model together with its accompanying Linear Temporal Logic formulae and

their corresponding automata. Section 2 introduces the concept of the use

of a modeling tool to validate a general system representable by a Finite

State Machine (FSM). The SPIN/PROMELA modeling tool developed by

Holzmann [5] is used throughout and the reader is assumed to be somewhat

familiar with this system although that isn't essential for a reading of the

paper. Section 3 shows that the GDRS behaves as a communications sys-

tem - showing that the SPIN/PROMELA tool is particularly valuable as an

analysis tool since it was designed to validate such systems. Section 4 sum-

marizes state properties of the system to be modeled. Section 5 gives a high



Draft - DO NOT REDISTRIBUTE 3

level description of the model. Section 6 describes the Statecharts language

and introduces the Statecharts model for the GDRS. Section 7 develops the

�ve major fault cases. Section 8 develops the Linear Temporal Logic for

the validation model and the methodology developed in section 2 is applied

to the GDRS giving an automaton that has the capability to validate the

GDRS model. Section 9 shows the development of the PROMELA model

that was used for the validation of Case 1. Section 10 gives the results of the

modeling procedure. Section 11 discusses future work and section 12 gives

conclusions.

2 Linear Temporal Logic Background

The SPIN/PROMELA modeling scheme derives much of its power from

its ability to incorporate formal theorem proving elements into its search

schemes. B�uchi [1] discovered the fundamental relationship between �nite

automata and the second-order monadic calculi. This innovation made it

possible to incorporate Linear Temporal Logic (LTL) assertions as compo-

nents of computer modeling schemes.

A B�uchi automaton is a nondeterministic Finite State Machine (FSM)

A = (�;S; T r; S0;F). � is the input alphabet, S is the set of states, S0 the

set of initial states, and F is the set of accepting states. T r 2 S � �� S is

the transition relation. If (s; �; s0) 2 T r then A can move from s to s0 upon

reading �. A trace or input word is an in�nite sequence � = �1 �2 �3, : : :

,�i 2 �, while a run r, over � is an in�nite sequence s0
�1
7�! s1

�2
7�! : : : ; s0

2 S0,(si, �i+1, si+1) 2 T r, i = 0; 1, : : :. A run r is said to be accepting i�

there exists a state g 2 F such that g appears in�nitely often in r. The

language L(A) is the set of all traces � such that A has an accepting run

over �.

Let fi be an LTL assertion corresponding to a system requirement to

be validated that generates automaton Ai. Given n B�uchi automata of

the form Ai = (�i;Si; T ri; S0i;Fi), they are closed under the operation of

intersection. Their intersection
Tn
i=1Ai accordingly is a B�uchi automaton,

and it accepts the language
Tn
i=1L(Ai). The LTL formula that generates

this automaton has the form

f =

i=n̂

i=1

f i (1)

Equation 1 allows multiple LTL formulae to be concatenated such that



Draft - DO NOT REDISTRIBUTE 4

the resulting automaton will preserve the characteristics of the language

accepted by each automaton were it to be implemented in isolation.

By incorporating the Finite State Machine (FSM) representation of the

formal properties to be validated by the model, the model can be routinely

checked for the presence or the absence of the desired characteristics.

The SPIN/PROMELA system has an LTL translator that can produce

the corresponding B�uchi automaton from an input requirement expressed

as an LTL formula.

The SPIN modeling system checks to see that �nite state program P

satis�es the temporal logic formula f. First, the global state graph of P is

computed. Second, the B�uchi automaton is constructed for :f : A
:f . Third,

the synchronous productP � A
:f is computed. Finally, the validation run is

performed on P � A
:f . For each state transition in P, SPIN checks to see if

a corresponding transition in A
:f is possible. Should one of A

:f 's accepting

states be entered, A
:f will have been shown to have recognized a string

� from the language generated from the original LTL formula :f . At this

point a trail �le can be written showing the sequence of state transitions

in P that gave rise to the accepting state in A
:f . This �le can then be

annotated and run as a test case against the implementation.

2.1 Requirements Completeness and Consistency Validation

A well formed FSM model exhibits requirements completeness and consis-

tency properties. Requirements consistency demands that for each state one

and no more than one exit (guard) condition be satis�ed at the same time.

If more than one exit condition is simultaneously true, the requirements are

inconsistent. If at a certain execution point, none of the exit conditions

from a state are true and the state is not a terminating state, the require-

ments are incomplete. In either case an adjustment would have to be made

in the requirements or in the model as necessary to bring the system into

conformance. Semantically, LTL formulae allow speci�c dynamic and static

requirements to be validated.

Suppose no trace � from the language L(A
:f ) is accepted by A

:f with

respect to �nite state program P. For properly constructed fi , this empti-

ness condition is evidence that the LTL assertion fi is not violated for the

model. For example, consider the liveness condition fi = 2(p! 3q) where

2 and 3 are the henceforth and eventually operators respectively. Then

realization of the emptiness condition with respect to A
:f is a proof of cor-

rectness on the model when p is known to be true at some execution point.



Draft - DO NOT REDISTRIBUTE 5

Since safety properties represent conditions that should never occur, their

emptiness conditions are more straight forward.

Having proved assertions about the system model does not constitute

evidence that the implementation is error free even if the implementation is

able to successfully execute the various edited trail �les generated through

the validation process as described above. Nevertheless, a much higher level

of con�dence can be achieved in this way. The use of the SPIN system

in the manner described above can be used to bring the model and the

implementation into agreement.

If undesireable behavior is found to be absent from the model but present

in the implementation, the implementation can be brought into agreement

with the model. Conversely, if an undesired behavior is found to be present

in the model but not in the implementation, then the model can be brought

into agreement with the implementation. In this way the implementation

can be rapidly validated to a high degree of con�dence. The bene�ts are

achieved here due to the relatively fast execution speed of the model with

its accompanying short search times.

3 GDRS Coordinates behavior as a Communica-

tions System

This section shows that the GDRS behaves as a communications system -

This correspondence shows that the SPIN/PROMELA tool is particularly

valuable as an analysis tool since it was designed to validate such systems.

There is a one-to-one correspondence between the validation of a communi-

cations protocol and the validation of the mark and rollback process. Holz-

mann [5] has de�ned A communications protocol as a �ve component spec-

i�cation for how communication is to be carried out in an error free way

among two or more separate elements. They are

1. The service to be provided by the protocol.

2. The assumptions about the environment in which the protocol is

executed.

3. The vocabulary of messages used to implement the protocol

4. The encoding (format) of each message in the vocabulary

5. The procedure rules guarding the consistency of message exchanges

Element 5. is contained in the requirements and the design of the critical

sequence application. And, it is the phase where the validation e�ort is



Draft - DO NOT REDISTRIBUTE 6

concentrated.

The Mark and Rollback Process is isomorphic to a communications sys-

tem. It has a communications protocol, exhibits layered construction, pos-

sesses liveness and safety properties, and uses synchronous communications

between its dual redundant processor systems.

The following provides a brief and partial mapping of a sampling of se-

lected elements from the Mark and Rollback Process to the �ve elements

present in a communications protocol. It demonstrates how the above men-

tioned correspondence comes about.

1. The service provided by the protocol is to transfer messages about

the state of the prime string to the online string. This is done so that the

online string can achieve prime status as soon as possible should the prime

system become inoperable.

2. The environmental assumptions are: There are two platforms desig-

nated the prime and online strings such that the prime string controls the

spacecraft bus while the online string runs as a hot backup ready to take

over should that be necessary.

3. The major vocabulary consists of the variables SFP, CS, and CM.

SFP is the spacecraft fault protection 
ag. When this 
ag is set, the GDRS

has experienced a fault that has not yet been repaired. The CS 
ag is set in

the prime string and in the backup string when the critical sequence is being

processed in each respective string. The CM 
ag is set to indicate that the

critical sequence is active and to remind the strings that when an interfering

fault is �xed, the suspended critical sequence needs to be restarted at the

last valid aged mark point. Restart data germane to the mark and rollback

process contains much more information that is used during certain types

of resets to restore functionality.

4. The three protocol 
ags mentioned, use single bit encoding. When

a 
ag is set its value is 1; when reset, its value is 0. Table 1 shows the

encoding scheme.

5. The procedure rules are most complex to deal with, the hardest to

specify, the most di�cult to validate. Most of the validation work occurs

here. Examples from the mark and rollback support application are that

the protocol variables SFP, CM, and CS are to be broadcast once each

second to the online string and actually also back to the prime string by

the prime string to allow the prime string to check its own synchronization.

During the running of a critical sequence, when the online string detects a

broadcast message of the form CM=1, CS=0, SFP=1, it must stop running

its own critical sequence. The online string must remain in this state until



Draft - DO NOT REDISTRIBUTE 7

Data Structure Value Meaning

SFP 0001 fault

0000 cleared

CS 0001 CS executing

0000 CS not executing

CM 0001 CS active or suspended

0000 CS inactive and not suspended

Table 1: Communication Flags

it detects that the prime string has completed servicing the fault. It then

resumes execution of the critical sequence at the aged mark point when it

receives the message CM=1, CS=1, SFP=0.

This example shows a small subset of the actual elements and their proce-

dure rules that belong in each category. The complete protocol speci�cation

is in excess of 80 pages.

The example shows that the two communicating strings function under

the control of a communications protocol and that they can therefore be

modeled as a communications system.

4 GDRS Properties

The GDRS is a real time reactive system. As such, it it acts upon and

responds to its environment. Three major characteristics used to describe

reactive systems are dynamic or liveness properties, invariance, and safety

properties. Liveness properties express actions that are required to take

place either now or at some future time.

To apply modeling tools to the GDRS �nite state system, the number of

states present in the system must be less than 109. If exhaustive searching of

the state space is required, a state space less than several hundred thousand

states are required. The state space available to the entire system is of

the order of 1040 states. Accordingly, the GDRS was partitioned into 5

equivalence classes by required functionality. This procedure allowed the

5 major fault categories to be validated separately. The resulting exercise

estimated that none of the equivalence classes has more than several hundred

thousand states. Accordingly, a model checking approach is feasible towards



Draft - DO NOT REDISTRIBUTE 8

validating GDRS requirements.

5 GDRS High Level Model Description

The Generic Dual Redundant System consists of two hardware platforms

running identical software for the purpose of maximizing system reliability

and availability. The systems exchange information to synchronize soft-

ware operation. One of the platforms has control of the system bus and

is called the prime string. The other one is called the online string and it

executes in synchronization or at most executes within one second of the

prime string. Primary information exchanged between the two systems is

by the synchronous (rendez-vous) communication of a table called the State

Table Broadcast (STB). The STB is a 32 word table that is broadcast by the

prime string to the online string and to itself once per second. This paper

considers the case where each of the strings executes high priority programs

called critical sequences that must be responsive to unknown faults. To this

end, the strings use a variant of the checkpoint and rollback process found

to work well in industrial applications [6]. The industrial systems usually do

not use hard rollback points embedded in the code that correspond to com-

pleted transactions in the executable code. Rollback points are computed

on the 
y and recorded for possible use should a problem occur later. They

could correspond to the successful completion of a data base read or write

operation for example. Such a completion is referred to as a commit opera-

tion meaning that if a system crash occurs system operations could be rolled

back to the location where the comit occurred and proceed on from here.

As the next operation proceeds, it could be interrupted by a power outage

in a remote unit; the execution point would then be rolled back to the last

checkpoint; and execution restarted from there. Here the system works anal-

ogously except that the rollback points are now called mark points instead

of checkpoints and they are hard coded into the executing program. Each

mark point now delineates the completion of a sub-operation in the overall

program or sequence that is being executed. Checkpointing systems are well

suited to operation where the nature of a future fault is not known ahead of

time. These systems are ideal for use in man-out-of-the loop systems such

as those in spacecraft where the two way light time (TWLT) is too long to

make human response a feasible option. The next section gives an example

of how the GDRS system might be used in a man-out-of-the loop situation

where autonomy in the face of faults is important.



Draft - DO NOT REDISTRIBUTE 9

5.1 Operational Example

Consider the case where the GDRS is used in the retrieval and return of a

soil sample by a remote robot. The prime string would perform all activities

in the critical sequence unless a fault precluded it from proceeding. In that

case the online string would take over. The completion of the initial retrieval

of the sample corresponds to an operation that need not be repeated. The

code ending in the completion of this process would be delineated with

a mark point. The next group of instructions corresponding to the next

subsequence in the program might be the storage of the sample that was

just retrieved. Having �nished this subsequence, another mark point would

be encountered in the critical sequence, and following this, the next set of

instructions in the sequence would be executed and so on until the task was

�nally completed. If the storage of the soil sample were interrupted by the

occurrence of a fault, the system would repair the fault; roll back control to

the beginning of the last mark point; and continue execution from there. It

would not be necessary to waste battery power or time to retrieve another

sample since that was already achieved. In essence then, this process is

important in situations where two con
icting goalss must be met: (a) time

and/or power considerations are of the essence and (b) system faults must

be repaired before execution can proceed. The solution is to repair the fault

but to only repeat any previously incomplete subset of the task at hand.

This paper focuses on the validation of the mark and rollback process as it

is supported by the GDRS.

5.2 String Operation and Mark Point Aging

The online string uses the STB received each second to keep itself executing

its copy of the critical sequence in synchronization with the prime string.

This is particularly important since fault protection operates only in the

prime string. This is a fault containment requirement. It operates to keep

the isolation and repair of faults to the prime string only when possible.

During the interval the prime string is repairing a fault, the online string

must stop executing the critical sequence and wait for the STB to tell it

that the system fault protection manager has set the 
ag SFP to 0, thereby

signaling it to proceed with the critical sequence. This system controls

external elements that are mostly mechanical in nature. Accordingly, the

software is in general always ahead of the hardware. For this reason, three

full seconds of execution time are allowed to pass after a new mark point is



Draft - DO NOT REDISTRIBUTE 10

encountered by the software before the encounter with the new mark point is

counted. This procedure is necessary to give any mechanical tasks a chance

to be completed in the previous mark point interval. It also allows any

faults to be properly logged to the previous mark point interval should they

actually have occurred during the previous sequence but were not registered

due to time delays incurred in reporting the fault.

To record the passage of time, each new mark point is aged each second

by one second by moving it one level deeper in a three level bu�er. Only

mark points that have reached the bottom will be eligible for use in the

rollback process. Figure 1 shows a high level snapshot of normal critical

sequence operation in both strings.

5.3 Fault Handling

Two major scenarios are important here. First, certain types of faults are of

such a nature that they can be repaired by the prime string. As explained

above, when a fault occurs the three protocol 
ags (CS, CM, SFP) change

state from (1, 1, 0) to (0, 1, 1). This information is broadcast to the online

string on once per second. When the online string sees the SFP 
ag, it

suspends operation of the executing critical sequence and waits for the prime

string to repair the fault. Once the fault is repaired, the prime string can

roll back to the last valid mark point and resume processing. The online

string will see the new SFP 
ag in the STB message, rollback to the aged

broadcast mark point and restart its copy of the critical sequence. Figure 2

illustrates this case.

If the prime string goes down, the online string will sense this condition;

transition to prime status thereby taking control of the system bus; roll

back to the last mark point; and resume execution of the critical sequence.

Having done this, the CS 
ag would be set to 1 to indicate that the critical

sequence is again running. Meanwhile the old prime string will try to repair

the fault that brought it down initially. If the old prime string recovers

it will go through a reboot phase. Noticing that there is already a prime

string, it will then transition to online status. Figure 3 shows the processes

involved in this scenario.

6 The Statecharts Language

David Harel's Statecharts [2] [3] formalism is used to describe the GDRS

system. Because we are using a highly simpli�ed model keeping only char-



Draft - DO NOT REDISTRIBUTE 11

Figure 1: GDRS in Normal Dual String Critical Sequence Operation



Draft - DO NOT REDISTRIBUTE 12

Figure 2: GDRS Dual String Operation with Prime String Fault in Progress



Draft - DO NOT REDISTRIBUTE 13

Figure 3: GDRS Platform String Swap



Draft - DO NOT REDISTRIBUTE 14

Figure 4: Harel Statechart Superstate Example



Draft - DO NOT REDISTRIBUTE 15

Figure 5: GDRS Prime String Harel State Chart



Draft - DO NOT REDISTRIBUTE 16

Figure 6: GDRS Online String Harel State Chart



Draft - DO NOT REDISTRIBUTE 17

acteristics germane to the mark and rollback process, we have selectively

ignored many other threads that could be simultaneously executing. As a

consequence, an understanding of the simpli�ed system statechart as shown

in to Figure 4 will be adequate for an understanding of the systems treated.

The �gure shows the notation used to describe the superstate. States as

designated in a statechart are not the same concept as that discussed to

determine the total number of allowable con�gurations for purposes of the

validation discussed above. For purposes of understanding Statecharts, a

state is a set of conditions and capabilities at a particular point in time or

under a set of circumstances which characterize a things behavior. States

may be grouped into super states. Accordingly, a super state is an abstrac-

tion of the states it encompases, as A is to S1 and S2 (substates of A) in

Figure 4. There are two ways to enter a super state. First, the transition

to the superstate may end at the states border shown as transition a, the

default entry state. Or if the default entry is not chosen a normal entry

is shown as transition b. In either case a or b since entry is made at the

boundary, the default state d must be speci�ed within the state. A transi-

tion may also be made to a particular state within the super state as shown

by transition c. Transitions out of the superstate can originate at the bor-

der. Transition e shows this case and it represents an exit from any of the

states within the border. Transition f shows a valid transition out of su-

perstate A from substate S2. Such transitions indicate an exit from any of

the states that make up the superstate. Figures 5 and 6 show the simpli�ed

Harel Statecharts for the prime and online strings respectively. Transitions

are labeled with their corresponding actions. The validation model that is

discussed in the rest of the paper is based upon these two statecharts. The

discussion that follows refers to the Statechart models of the GDRS shown

in Figures 5 and 6.

7 Five Major Fault Cases

The GDRS system described here is a highly complex spacecraft controller.

As such it contains a large number of states that equate for purposes of

modeling complexity to the total number of di�erent values those variables

in aggregate can take on. This number easily gets to be too large a state

space to search. Consequently, a key element in the practical validation of

such systems is the recognition of what elements are signi�cant and what

elements can be regarded as extraneous to the validation. The procedure is



Draft - DO NOT REDISTRIBUTE 18

then to model only the essentials germane to the mark and rollback model.

Recognizing that the �ve fault cases have the additional requirement

imposed that the spacecraft system is not required to process multiple si-

multaneous faults, the �ve fault cases were partitioned into �ve separate

cases. The validation becomes managable as mentioned earliler. Should

faults be detected during the repair of a fault condition, the system regards

them as additional triggers of the current fault condition being processed

and they are ignored. It is additionally necessary when considering each of

the fault scenarios, to judiciously build a simpli�ed system model so that

validation times are brought as an initial goal into the feasible range of un-

der an hour or so of search time for each fault condition. The �ve fault

scenarios are (a) peripheral interfering fault (b) central interfering bus fault

(c) prime central interfering fault (d) online fault and (e) undervoltage trip

fault.

7.1 Case 1 Peripheral Interfering Fault

This fault is a spacecraft fault that is outside of the GDRS system per se. In

this case the prime string is given the task of repairing the fault. The prime

string would set the SFP 
ag to 1 to indicate a fault operation is in progress;

stop the running critical sequence; set the CS 
ag to zero; and enter the SFP

Active state to repair the fault. See Figure 5 for this transition. The STB

would still be transmitted to the online string once per second. That is,

since the fault is outside of the prime string, its ability to function has

accordingly not been impared. Having received the STB, the online string

will cease running its copy of the critical sequence; set its own CS 
ag to 0;

and transition to the Fault Idle state, waiting there until it receives an STB

message indicating that it is all right to proceed with the critical sequence at

the last valid mark point. Once the prime string has repaired the fault it sets

its SFP 
ag to zero; enters the Fault Idle state in preparation for resuming

the critical sequence. At this point it sets its CS 
ag to 1 and resumes

executing its copy of the critical sequence at the aged broadcast mark point.

When the online string sees an STB message indicating that the SFP 
ag

is is 0 it sets its CS 
ag to 1; enters the SEQUENCE CRITICAL state and

resumes executing its copy of the critical sequence at the aged broadcast

mark point. These transitions are illustrated in Figure 6.



Draft - DO NOT REDISTRIBUTE 19

7.2 Case 2 Online Fault

In this case the prime string keeps on executing the critical sequence since

its operation isn't impared. The online string attempts to repair itself and

if successful attempts to resynchronize itself to the prime string so that it

can be of further use should the prime string encounter di�culties in the

future.

7.3 Case 3 Central Interfering Bus Fault

In this fault scenario the prime string is required to go into its SUSPEND

state to repair the fault. In this state the STB ceases operation. Accordingly,

when the online string senses the lack of two consecutive STB broadcasets it

stops running its critical sequence; sets its CS 
ag to zero; and goes into its

Fault Idle state awaiting the return of the STB indicating that it is all right

to roll back to the last mark point and to proceed with the critical sequence

as above. The online string senses the loss of two consecutive STBs but

upon inspecting the cross-string-state vector sees that the prime string is

in a Central Interfering Bus Fault situation and it in fact not down. Here,

when the prime string completes processing the fault, it must pass, through

the PRIME INIT state where it completes processing on its way to resuming

the critical sequence through the sequence of PRIME INIT, Fault Idle and

�nally SEQUENCE CRITICAL as shown in Figure 5.

7.4 Case 4 Prime Central Interfering Fault

In this case the prime string itself is a�ected and it must go through a more

severe reboot process than that discussed the Central Interfering Bus Fault

case. Here, the online string similiarly detects the loss of the STB for two

consecutive seconds. Then checking the cross-string state vector, it sees

that the prime string is in a prime central interfering fault response. Conse-

quently, the online string transitions through the online state to become the

new prime string and therefore takes control of the spacecraft bus. Mean-

while to old prime string tries to recover. If it does so it goes through the

reboot process in the RAM INIT state shown in Figure 6 and subsequently

become the new prime string if all goes well.



Draft - DO NOT REDISTRIBUTE 20

7.5 Case 5 Undervoltage Trip Fault

In this most challenging case a power supply failure causes one or both

strings to partially or fully lose the ability to recover the critical sequence.

Depending on the severity of the outage, none, one, or both strings may be

forced to reset.

This paper focuses on the validation of Case 1 and a discussion of the

initial results.

8 Linear Temporal Logic Formulae

This section develops the LTL formulae for several cases of interest. Each

LTL formula will be incorporated into the resulting model as a never clause.

The resulting validation then procedes as outlined in Section 2.

8.1 Rollback in Cases 1 Through 5

The LTL formulae developed here apply to rollback in all 5 cases. For

concreteness, and since this paper focuses on validating Case 1, the result

is presented with respect to a prime string peripheral interfering fault. The

scenario examined here assumes a fault occurs in the prime string and that

it is of such magnitude that it can be handled by the prime string alone

without resorting to the backup string. As discussed above the state vector

for the protocol 
ags (CS, CM, SFP) switches from (0,1,1) to (1, 1, 0) upon

repair of a peripheral fault. following this operation control in the prime

string would roll back to the last valid mark ppoint resuming execution at

that point.

To validate that the correct rollback point is achieved, three separate

conditions need to be responded to correctly.

1. If the last mark point was at the start of the program, roll back to

the start.

2. If the time following the last mark point was less than 3 seconds and

the last mark point was not at the start of the program, roll back to the next

previous mark point. That is, do not use the mark point that has not yet

been properly aged, even though it has been encountered in the execution

of the current critical sequence.

3. If the time following the last mark point was greater than or equal to

3 seconds roll back to the last valid aged mark point.1

1Responses 1 through 3 are designed to test that the mark point aging process works



Draft - DO NOT REDISTRIBUTE 21

All of these are liveness conditions; they specify an action that must take

place now or in the future.

Symbolically, the LTL formulae representing these conditions have the

form:

1. 2(p! 3q)

meaning it is always the case that when p is true that now or in the

future q will be true. Here p and q are Booleans such that the completed

form for condition 1. is:

p = (SFP = 1) ^ (CS = 0) ^ (CM = 1) ^ (m[i] = start)

q = (pc = m[i]) ^ (SFP = 0) ^ (CS = 1) ^ (CM = 1)

where t is time in seconds since the last encountered mark point; m[i] is

the mark point address vector for mark point i; pc is the critical sequence

machine program counter; and "start" is the address of the beginning of the

critical sequence program. See Table 1 for the syntax and semantics of the


ags CM, CS, SFP. Conditions 2. and 3. above similarly become:

2. 2(r ! 3s) with r and s de�ned as

r = (t < 3) ^ (SFP = 1) ^ (CS = 0) ^ (CM = 1) ^ (m[i] 6= start)

s = (pc = m[i� 1]) ^ (SFP = 0) ^ (CS = 1) ^ (CM = 1)

3. 2(u! 3v) with u and v de�ned as

u = (t � 3) ^ (SFP = 1) ^ (CS = 0) ^ (CM = 1)

v = (pc = m[i]) ^ (SFP = 0) ^ (CS = 1) ^ (CM = 1)

Equation 1 allows 1. through 3. to be combined for purposes of gener-

ating the composite f:

f = ^3i=1fi = 2(p! 3q) ^ (2(r! 3s) ^ 2(u! 3v) (2)

This formula can easily be translated into its corresponding automaton

using the SPIN LTL translator. It can then be exhaustively validated with

known input in isolation before being used with the model.

Three analogous conditions could be written down for the online string

using its copies of the 3 protocol variables. Each of these giving another

properly. Accordingly, they make assumptions concerning the possibility of faulty behavior

even though it is clear from the requirements that each of 1, 2, and 3 should behave as

given.



Draft - DO NOT REDISTRIBUTE 22

three fi to be concatenated with the result in equation 2:

f4 = 2(h! 3i)

f5 = 2(j ! 3k)

f6 = 2(l! 3m)

In this way the rollback could be validated in each string when (a) the

prime string does not fail, but it is desired to check that in the presence of

a prime string fault condition, the online string rolled back appropriately

and did not get ahead of the prime string and (b) the prime string does fail

and the online string becomes prime and must take over using the critical

sequence that had been in place on the old prime string before the fault oc-

curred. Point (a) is particularly important to check because fault protection

does not run in the online string. This asymmetric behavior can cause the

two strings to get out of phase. 2

Having noted that it may be necessary for the prime and online strings

to exchange their identities should a serious error occur in the prime string,

a method to validate this requirement is needed. This point as addressed in

the next section where we develop the LTL formula for this process.

A more abstract way to validate the over-all e�ect of the synchronization

requirement on the bu�ers in the prime and the online strings is to check that

aged mark points are always in agreement with each other. This condition

can be stated by using the safety condition that the aged mark point p in

the prime string never disagree with the aged broadcast mark point q in the

online string. The corresponding safety condition would be

w = :2(p 6= q)

meaning that w should always be false.

2Normally a communication protocol for a two element system is validated symmet-

rically. Each of two communication elements function as both a transmitter or receiver

during normal operations. There is no functionality in one component that is not in the

other. Consequently, validation of one element su�ces to validate the system. Here each

of the two strings (elements) can assume the other strings' identity. This happens me-

chanically but not functionally. Functionally, each string contains an operational online

string machine or an operational prime string machine with di�erent characteristics. This

means the entire string functions as either an online or as a prime string, not as both. The

distinction being that the online string does not have the fault protection funtionality of

the prime string; it does not control the spacecraft; and it always functions as a receiver

of prime string information for synchronization purposes. Accordingly, the validation of

the entire system must treat both strings. One string can not be validated in isolation

and constitute the validation of the other one.



Draft - DO NOT REDISTRIBUTE 23

Description a (platform a) b (platform b) c (fault)

True prime prime has occurred

False online online no fault

Table 2: Platform a and b Parameters

8.2 Case 4 Swapping Strings

If a prime centeral interfering fault occurs in the prime string, it will be

necessary for the online string to transition to prime status; take control of

the system bus; roll back to the most recent valid mark point; and begin

execution of the critical sequence. Subsequently, having repaired the fault,

the old prime string will notice that there is already an existing prime string

and transition to online status. This last point assumes that the fault in

the old prime system is repairable. All of the above will be carried out by a

correctly executing model.

To validate the model's behavior a B�uchi automaton is added to the

system that captures this behavior. To construct this FSM, let a, b, and

c be Booleans representing GDRS components according to Table 2. The

LTL for this case is derived as follows.

When platform a is running the prime string, platform b is online (:b);

fault c occurs in platform a, now or in the future we demand that platform

b transition to prime status; platform a transitions to on line status (:a);

and that the fault c be repaired (:c). It must always be the case that this

series of events take place. The liveness condition expressing this sequence

of events is:

f1 = 2(pp ! 3ap)

where pp = a ^ :b ^ c

qp = b ^ :a ^ :c

It could also be the case that the roles of each of the platforms might

have been reversed at the outset with platform b running the prime string

and with fault c occurring on platform b. Then now or in the future we

demand that platform a transition to prime status; platform b transition

to online status (:b); and fault c be repaired (:c). The liveness formula

expressing this condition is



Draft - DO NOT REDISTRIBUTE 24

f2 = 2(rp ! 3sp)

where

rp = b ^ :a ^ c and

sp = a ^ :b ^ :c

Again using equation 1, both of these conditions can be combined to

produce 1 liveness condition:

f = ^2i=1fi = 2(pp ! 3qp) ^ 2(rp ! 3sp)

This formula allows both strings to swap states multiple times during

the running of a single critical sequence should that be necessary. The corre-

sponding B�uchi automaton is generated from this expression using the SPIN

LTL conversion option. Using the same reasoning implied by equation 1 all

of the liveness results derived so far can be combined to yield:

f = ^8i=1fi = 2(p! 3q) ^ 2(r ! 3s) ^ 2(u! 3v) ^ 2(h! 3i)^

2(j ! 3k)^ 2(l! 3m) ^2(pp ! 3ap) ^ 2(rp ! 3sp)

Using the distributive property of the henceforth operator2, with respect

to logical and ^, this formula simpli�es to

f = ^8i=1fi = 2((p! 3q) ^ (r! 3s) ^ (u! 3v) ^ (h! 3i)^

(j ! 3k) ^ (l! 3m) ^ (pp ! 3ap) ^ (rp ! 3sp))

Again the B�uchi automaton generated from this compound liveness con-

dition would be a part of the model represented by:

P �A
:f

The executing validation system will now routinely check the automaton

to see that the rollback takes place correctly on either platform. It also

checks that the platforms swap their software identities when a fault of type

c occurs.

A liveness property demanding that a running critical sequence termi-

nate at some point; that once a fault occurs, it will eventually be repaired;

and that certain prohibited combinations of the protocol 
ags never occur

(safety property) were also included in the validation run. Appendix A

shows the PRMOELA code that was used to validate the composite au-

tomaton. The init clause was changed by hand for each run to check to see



Draft - DO NOT REDISTRIBUTE 25

that each of the conditions was appropriately responded to.

9 Validation Using the PROMELA/SPIN Sys-

tem

The states referred to here are those found in Figures 5 and 6 of the State-

charts model of the GDRS.

The SPIN system is based on the PROMELA language which is an

extension of a smaller language named Argos that was developed in 1983 for

protocol validation, by Holzmann[4]. It di�ers from other guarded command

languages in that the statements are not aborted when all guards are false

but they block, thus providing the required synchronization. As can be seen

by inspection, the PROMELA code in the example that follows is based on

the c language.

The two major non-deterministic language constructs of PROMELA are

the selection structure and the repetition structure. The selection structure

randomly selects one of its elements for execution. The selection structure:

if
:: (a! = b) � > option1
:: (a == b) � > option2
�;

selects either the �rst choice followed by the :: or the second one. If the

�rst option is selected and the guard statement (a! = b) � >, is true, option1

is executed. If the guard statement is false, the execution blocks until the

condition becomes true. A similar result holds for the second selection.

The repitition structure repeatedly chooses from the elements within

its boundary. Otherwise it behaves in the same fashion as the selection

structure, blocking when one of the guards are false. As an illustration the

repitition structure analogous to the selection structure above is:
xin

do
:: (a! = b) � > option1
:: (a == b) � > option2
od;

By nesting a selection structure inside of a suitably de�ned repitition

structure, the GDRS requirements were modeled down to the design level

(interrupt level). This procedure imposes an ordering upon the actions that

take place at each of the eight interrupt levels of the system. This struc-

ture was accordingly imposed upon upon each substate shown in the Harel



Draft - DO NOT REDISTRIBUTE 26

Statecharts in Figures 5 and 6. The use of this structure has the advantage

that when jumping from one state to another at a certain interrupt level,

the timing is preserved accross states. The new selection structure at the

destination state places control at the same interrupt level preserving time

ordering accross states. This result is illustrated below.

#de�ne RTI 0(t == 0)
#de�ne RTI 1(t == 1)
#de�ne RTI 2(t == 2)
#de�ne RTI 3(t == 3)
#de�ne RTI 4(t == 4)
#de�ne RTI 5(t == 5)
#de�ne RTI 6(t == 6)
#de�ne RTI 7(t == 7)

int t;

t = 0;

Startup:
do
::if
::RTI 0� >

::RTI 1� >

::RTI 2� >
::RTI 3� > (CrossStringStateV ector[2= pid] == 0); break� >

::RTI 4� >

::RTI 5� >

::RTI 6� >
::RTI 7� >

�;
atomicft ++� > t = t%8g� >

od;

RAM INIT:
do
::if
:: RTI 0 >
:: RTI 1� >

:: RTI 2� >

:: RTI 3� >
:: RTI 4� >

:: RTI 5� >

:: RTI 6� >

:: RTI 7� >
fi;
atomicft ++� > t = t%8g� >

od;

In state Startup if the cross-string-state vector for the other string has

a value of 0, during interrupt 3, the guard condition is true and the break

command would cause the state to transition to state RAM INIT, entering

it during interrupt 3.

The following slightly more complex example illustrates the method for

implementation of the PROMELA model from the Statechart model of the

GDRS shown in Figure 5. Consider the state labeled SFP Active. The

PROMELA code for this state was written as follows:

SFP Active :



Draft - DO NOT REDISTRIBUTE 27

do
::if
::RTI 0� > State[ pid] = 17;

if
:: SFP = 0� >
SfpFault = 0� >

::skip� >

�;
::RTI 1� >
::RTI 2� >

::RTI 3� >

::RTI 4� >
::RTI 5� > if=� was a peripheral interfering fault generated? �=

:: FLT?[sfpfault(SfpFault0)]� > FLT?sfpfault(SfpFault0)
::else� >

�;
BUS!bus(CS;CM; SFP;Mark;SfpFault);

::RTI 6� >

::RTI 7� >

if
::!SfpFault && !SFP� >

goto PRIME Fault idle � >

::else� >

�;
�;
atomicft ++� > t = t%8g� >

od;

Here, at RTI 0 the CrossStringStateVector for the prime string is set to

17. Next the selection structure nondeterministically selects one of the two

cases. The �rst option cancels the SFP fault response 
ag and it turns o�

the system 
ag that generated the particular type of fault. In this case we

are considering interfering peripheral faults. The second option does noth-

ing meaning that processing in the rest of the system is allowed to go on as

it might be possible under the circumstances. If the fault is cleared by the

�rst option, then this result is available for transmission over the GDRS bus

during RTI 5. However, it is possible that another fault will be generated

entering through the FLT channel. The receipt of this fault is also simulated

RTI 5. That statement is handled with an ordinary deterministic if state-

ment testing to see �rst if there is a message in the queue on message channel

FLT. If there is, this message will be broadcast and seen by both the prime

and the online strings. If there is no new fault generated, and the nonde-

terministic choice above turned o� both 
ags, then this information would

be broadcast instead during RTI 5. Then upon reaching RTI 7, control is

transferred to the Fault Idle State. This is so since superstate SEQUENCE

IDLE is entered at its boundary and the default entry point is Fault Idle.

In the PROMELA code it is called PRIME Fault idle to distinguish it from

the similar state in the online system.



Draft - DO NOT REDISTRIBUTE 28

10 GDRS Validation Results

TBS

11 Future Work

The GDRS validation is a work in progress. Having shown the validation of

the model, we plan to complete the other 4 cases as well. Although they are

more complex, they should still be quite manageable and we look forward

to reporting on them as well in the near future.

Additionally, performance requirements could be validated if the system

were modeled with RTSPIN [7]. Using real time operators, the high level

design would be validated down to the interrupt level. The system uses

eight active interrupt levels. Most contribute something signi�cant in the

way of housekeeping activities that must take place each second to keep the

two active platforms in sync.

12 GDRS Conclusions

The validation scheme reported on here is e�cient because it couples search-

ing of the model state space with speci�c searches for formal dynamic (live-

ness) and static (safety) properties of the model's requirements. This pro-

cedure is capable of proving requirements completeness and consistency in

the model providing the state space can be thoroughly searched. If the state

space can not be thoroughly searched it can still provide a high degree of

con�dence in the degree to which the model is error free. In this later case

errors in the model may go undetected. Other errors in the model may

go undetected because they were not coded for or because the model does

not represent the system accurately. By alternately validating the model

against the implementation during the model building process this last prob-

lem would be minimized. The discovery of interesting system properties in

the model can be used to validate the implementation and to learn more

about the behavior of the system itself.

The cost bene�t ratio can be very high for testing in this way since

once the modeling scheme is constructed, thousands of states can be rapidly

searched in the model to select and focus on a signi�cantly smaller number

of problem areas. Accordingly, the payback on risk reduction should be

high through increased reliability and availability due to (a) detecting any



Draft - DO NOT REDISTRIBUTE 29

requirements that may be incomplete or inconsistent, (b) discovery of new

(unknown) system properties, (c) discovery of possible operations problem

areas and (d) suggesting design improvements.

References

[1] J. R. Buchi. On a decision method in restricted second-order arithmetic.

Proceedings of the International Conference on Logic Methodology and

Philosophy of Sciences 1960, Stanford University Press, Stanford Cali-

fornia, 1960.

[2] D. Harel. Statecharts: A visual approach to complex systems. Technical

Report CS84-05, The Weizmann Institute of Science, 1984.

[3] D. Harel and A. Pnueli. Logics and Models for Concurrent Systems.

Springer, 1985.

[4] Gerard Holzmann. Tracing protocols. AT&T Technical Journal,

64:2413{2434, December 1985.

[5] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice

Hall, 1991.

[6] Parameswaran Ramanathan and Kang G. Shin. Use of common time

base checkpointing and rollback recovery in a distributed system. IEEE

Transactions on Software Engineering, 19(6):571{582, June 1993.

[7] S. Tripakis and C. Courcoubetis. Extending promela and spin for real

time. Proceedings of the First SPIN Workshop, J-Ch. Gregorie, Ed.

INRS-Telecommunications, Montreal, QC, 1995.


